Sains Malaysiana 53(11)(2024): 3761-3770
http://doi.org/10.17576/jsm-2024-5311-18
Pemencilan, Pencirian dan Afiliasi Filogenetik Endofit Streptomyces sp. Bioaktif daripada Pokok yang Mempunyai Nilai Perubatan
(Isolation, Characterisation and
Phylogenetic Affiliation of Bioactive Endophytic Streptomyces sp.
Associated with Medicinal
Plants)
NURUL
‘IZZAH MOHD SARMIN1,2 & NORAZIAH MOHAMAD ZIN3,*
1Centre of Preclinical Science Studies, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Selangor,
Malaysia
2Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA,
Selangor Branch, 42300 Selangor, Malaysia
3Centre for Diagnostic, Therapeutic and Investigative Studies,
Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
Diserahkan: 29 Ogos 2023/Diterima: 6 September 2024
Abstrak
Kepelbagaian biologi tumbuhan di hutan Malaysia menyediakan persekitaran yang sesuai untuk pemencilan Streptomyces endofit. Strain novel Streptomyces merupakan sumber berpotensi dalam menghasilkan sebatian farmaseutikal bioaktif yang boleh dibangunkan sebagai ubatan baharu. Kajian ini bertujuan untuk memencilkan Streptomyces endofit daripada tumbuhan ubatan yang berbeza di Hutan Simpan Bangi, pengenalpastian, pencirian dan analisis filogenetik pencilan tersebut. Streptomyces endofit dipencilkan menggunakan kaedah sterilisasi permukaan dan pencilan ini seterusnya dikenal pasti menggunakan pemerhatian morfologi. Streptomyces endofit yang dipencilkan telah dikelaskan ke dalam kumpulan berdasarkan warna miselium aerial. Analisis jujukan gen 16S rRNA telah dijalankan untuk mentakrifkan hubungan filogenetik antara spesies yang berkait rapat dan juga antara strain yang tergolong dalam satu spesies. Semua pencilan kemudiannya diuji untuk aktiviti antimikrob. Tiga Streptomyces endofit iaitu SUK 8, SUK 10
dan SUK 15 telah berjaya dipencilkan daripada tumbuhan ubatan yang berbeza. Ketiga-tiga pencilan tersebut dikelaskan dalam kumpulan siri kelabu berdasarkan warna miselium aerial. Siri kelabu ini juga membentuk kelompok filogenetik yang sama berdasarkan data jujukan gen 16S rRNA. Berdasarkan analisis filogenetik jujukan gen 16S rRNA, semua pencilan dikelaskan sebagai Streptomyces eurythermus ATCC 14975T (persamaan jujukan gen 98.5%). Pencilan SUK 8, SUK 10 dan SUK 15 juga menunjukkan corak aktiviti biologi yang serupa yang berupaya merencat sehingga 100% organisma patogen yang sama. Keputusan ini mengesahkan bahawa terdapat korelasi yang baik antara kepelbagaian fenotip antimikrob dan gen
16S rRNA. Kesimpulannya, metabolit aktif yang berpotensi daripada Streptomyces endofit boleh dijangka daripada data taksonomi yang baik.
Kata kunci: Endofit; kajian filogenetik; Streptomyces; tumbuhan ubatan; 16S Rrna
Abstract
The high
biodiversity of plant species in Malaysian forests provides a suitable
environment for the isolation of endophytic Streptomyces. Novel strains
of Streptomyces are potential sources for producing bioactive
pharmaceutical compounds that can be developed as new drug candidates. This
study aims to isolate the endophytic Streptomyces from different
medicinal plants in the Bangi Reserve Forest before
identification, characterisation, and phylogenetic analysis of the isolates.
The endophytic actinomycetes were isolated using surface-sterilization method
and further identified through morphological observation. The isolated endophytic Streptomyces were classified based on the colour of aerial mycelium. 16S rRNA gene sequence
analysis was done to define the phylogenetic relationships among closely
related species and strains belonging to a species. All isolates were then
tested for their antimicrobial activities. Three endophytic Streptomyces,
SUK 8, SUK 10 and SUK 15 were successfully isolated from different medicinal
plants. These three isolates were classified into a grey series group based on
the colour of aerial mycelium. The grey series also formed the same phylogenetic
clade based on the 16S rRNA sequence data. Phylogenetic analysis of 16S rRNA
gene sequences showed all three isolates were classified as Streptomyces eurythermus ATCC 14975T (gene sequence
similarity 98.5%). Isolates of SUK 8, SUK 10 and SUK 15 also showed similar
patterns of biological activities with inhibition of up to 100% of the same
pathogenic organisms. These findings
proved a good correlation between the diversity of the antimicrobial phenotype
and the 16S rRNA gene. In conclusion, the potential of active metabolites from
endophytic Streptomyces can be expected from a good
source of taxonomy data.
Keywords:
Endophytes; medicinal plants; phylogenetic study; Streptomyces; 16S rRNA
RUJUKAN
Abdel-Razek,
A.S., El-Naggar, M.E., Allam, A., Morsy, O.M. &
Othman, S.I. 2020. Microbial natural products in drug discovery. Processes 8:
470.
Antony-Babu, S.
& Goodfellow, M. 2008. Biosystematics of alkaliphilic streptomycetes isolated from seven locations across a beach and dune sand system. Antonie van Leeuwenhoek 94(4): 581-591.
Atalan, E., Manfio,
G.P., Ward, A.C., Kroppenstedt, R.M. &
Goodfellow, M. 2000. Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77(4): 337-353.
Altschul, S.F., Madden, T.L., Schaffer, A.A.,
Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and
PSI-BLAST: A new generation of protein database search programs. Nucleic
Acids Research 25: 3389-3444.
Arasu, M.V., Duraipandiyan,
V., Agastian, P. & Ignacimuthu, S. 2009. In vitro antimicrobial
activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock
soil (India). Journal de Mycologie Médicale19: 22-28.
Azerang, P. & Sardari,
S. 2017. Bioactive compound produced from Actinomycetes-Streptomyces. Chemistry 151: 1507-1523.
Bubici, G. 2018. Streptomyces spp.
as biocontrol agents against Fusarium species. CAB Rev. 13:
50.
Castillo, U.F., Browne, L., Strobel, G.,
Hess, W.M., Ezra, S., Pacheco, G. & Ezra, D. 2007. Biologically active
endophytic streptomycetes from Nothofagus spp. and other plants in Patagonia. Microbial Ecology 53(1): 12-19.
Coombs, J.T. & Franco, C.M.M. 2003.
Isolation and identification of actinobacteria from surface-sterilized wheat
roots. Environmental Microbiology 69(9): 5603-5608.
Chang, T.L., Huang, T.W., Wang, Y.X., Liu,
C.P., Kirby, R., Chu, C.M. & Huang, C.H. 2021. An actinobacterial
isolate, Streptomyces sp. YX44, produces broad-spectrum
antibiotics that strongly inhibit Staphylococcus aureus. Microorganisms 9:
630.
Chun, J., Lee, J.H., Jung, Y., Kim, M.,
Kim, S., Kim. B.K. & Lim, Y.W. 2007. EzTaxon: A
web-based tool for the identification of prokaryotes based on 16S ribosomal RNA
gene sequences. International Journal of Systematic and Evolutionary
Microbiology 57: 2259-2261.
Donald, L., Pipite,
A., Subramani, R., Owen, J., Keyzers, R.A. & Taufa, T. 2022. Streptomyces: Still the biggest
producer of new natural secondary metabolites, a current perspective. Microbiology
Research 13(3): 418-465.
Felsenstein, J. 1985. Confidence limits on
phylogenies: An approach using the bootstrap. Evolution 39: 783-791.
Fiedler, H.P., Bruntner,
C., Riedlinger, J., Bull, A.T., Knutsen,
G., Goodfellow, M., Jones, A., Maldonado, L., Pathom-aree,
W., Beil, W., Schneider, K., Keller, S. & Sussmuth, R.D. 2008. Proximicin A, B and C, novel aminofuran antibiotic and
anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. The Journal of Antibiotics 61:
158-163.
Fitch, W.M. 1971. Towards defining the
course of evolution: Minimum change for a specific tree topology. Systematic
Zoology 20: 406-416.
Genilloud, O. 2017. Actinomycetes: Still a
source of novel antibiotics. Natural Product Reports 34: 1203-1232.
Gevers, D., Cohan, F.M., Lawrence, J.G., Spratt,
B.G., Coenye, T., Feil, E.J., Stackebrandt,
E., Van de Peer, Y., Vandamme, P. & Thompson,
F.L. 2005. Re-evaluating prokaryotic species. Nature Reviews Microbiology 3(9): 733-739.
Ghadin, N., Zin, N.M., Sabaratnam,
V., Badya, N., Basri, D.F.,
Lian, H.H. & Sidik, N.M. 2008. Isolation and
identification of novel endophytic Streptomyces SUK 06 with
antimicrobial activity from Malaysian plant. Asian Journal of Plant Science 7(2): 189-194.
Goodfellow, M., Kumar, Y., Labeda, D.P. & Sembiring, L.
2007. The Streptomyces violaceusniger clade: A
home for streptomycetes with rugose ornamented
spores. Antonie van Leeuwenhoek 92:
173-199.
Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. & Pogni,
R. 2018. Streptomyces secondary metabolites. Basic
Biology and Applications of Actinobacteria 6: 99-122.
Hou, B.C., Wang, E.T., Li, Y., Jia, R.Z.,
Chen, W.F., Man, C.X., Sui, X.H. & Chen, W.X. 2009. Rhizobial resource associated with epidemic legumes in Tibet. Microbial Ecology 57: 69-81.
Jensen, P.R., Williams, P.G., Oh, D.C.,
Zeigler, L. & Fenical, W. 2007. Species-specific
secondary metabolite production in marine actinomycetes of the genus Salinispora. Applied and Environmental Microbiology 73(4): 1146-1152.
Kelly, K.L. 1964. Inter-society colour
council-national bureau of standards color-name
charts illustrated with centroid colors. Washington: U.S. Govt. Print. Off.
Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H,
Yi, H., Won, S. & Chun, J. 2012. Introducing EzTaxon-e:
A prokaryotic 16S rRNA gene sequence database with phylotypes that represent
uncultured species. International Journal of Systematic and
Evolutionary Microbiology 62: 716-721.
Lapaz, M.I., Cisneros, E.J., Pianzzola,
M.J. & Francis, I.M. 2019. Exploring the exceptional properties
of Streptomyces: A hands-on discovery of natural products. The American Biology Teacher 81: 658-664.
Majewski, J. & Cohan, F.M. 1999. DNA
sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153(4): 1525-1533.
Nicault, M., Zaiter, A., Dumarcay, S., Chaimbault,
P., Gelhaye, E., Leblond,
P. & Bontemps, C. 2021. Elicitation of antimicrobial active compounds
by streptomyces-fungus co-cultures. Microorganisms 9:
178.
Sarmin, N.I.M., Tan, G.Y.A., Franco, C.M.M., Edrada-Ebel, R., Latip, J. &
Zin, N.M. 2013. Streptomyces kebangsaanensis sp. nov. an endophytic actinomycete isolated from a
Malaysian ethnomedicinal plant, that produces phenazine-1-carboxylic acid. International
Journal of Systematic and Evolutionary Microbiology 63: 3733-3738.
Payne, G., Ward, A.C. & Goodfellow, M.
2001. The Streptomyces clavuligerusclade: A
home for clavulanic acid producing streptomycetes. The
12th International Symposium on the Biology of Actinomycetes (ISBA),
5-9 August, Vancouver, British Columbia, Canada.
Qin, S., Li, J., Chen, H.H., Zhao, G.Z.
& Zhu, W.Y. 2009. Isolation, diversity and antimicrobial activity of rare
actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Applied Environmental Microbiology 75: 6176-6186.
Saitou, N. & Nei,
M. 1987. The neighbor-joining method: A new method
for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:
406-425.
Satheeja, S.V. & Jebakumar,
S.R.D. 2011. Phylogenetic analysis and antimicrobial activities of Streptomyces isolates
from mangrove sediment. Journal of Basic Microbiology 51(1): 71-79.
Sheil, D. 1999. Tropical forest diversity,
environmental change and species augmentation: After the intermediate
disturbance hypothesis. Journal of Vegetation Science 10: 851-860.
Shirling, E.B. & Gottlieb, D. 1966. Methods for
characterization of Streptomyces species. International Journal of
Systematic Bacteriology 16: 313-340.
Stackebrandt, E. & Goebel, B.M. 1994. Taxonomic
note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the
present species definition in bacteriology. International Journal of Systematic Bacteriology 44:
846-849.
Stackebrandt, E., Frederiksen, W., Garrity, G.M., Grimont, P.A.D., Kämpter, P.,
Maiden, M.C.J., Nesme, X., Rosselló-Mora,
R., Swings, J., Trüper, H.G., Vauterin,
L., Ward, A.C. & Whitman, W.B. 2002. Report of the ad hoc committee for the
re-evaluation of the species definition in bacteriology. International
Journal of Systematic and Evolutionary Microbiology 52(Pt 3): 1043-1047.
Staley, J.T. & Gosink,
J.J. 1999. Poles apart: Biodiversity and biogeography of sea ice bacteria. Annual
Review of Microbiology 53: 189-215.
Strobel, G., Daisy, B., Castillo, U. &
Harper, J. 2004. Natural products from endophytic microorganisms. Journal of
Natural Products 67: 257-268.
Tamura, K., Dudley, J., Nei,
M. & Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)
software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
Tan, G.Y.A., Robinson, S., Lacey, E.,
Brown, R., Kim, W. & Goodfellow, M. 2007. Amycolatopsis regifaucium sp. nov., a
novel actinomycete that produces kigamicins. International
Journal of Systematic and Evolutionary Microbiology 57(11): 2562-2567.
Thompson, J.D., Higgins, D.G.
& Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids
Res. 22: 4673-4680.
Verma, V.C., Gond, S.K., Kumar, A., Mishra,
A., Kharwar, R.N. & Gange,
A.C. 2009. Endophytic actinomycetes from Azadirachta indica A. Juss.:
Isolation, diversity, and anti-microbial activity. Microb.
Ecol. 57: 749-756.
Ward, A.C. & Allenby, N.E.E.
2018. Genome mining for the search and discovery of bioactive compounds:
The Streptomyces paradigm. FEMS Microbiology Letters 365:
fny240.
Ward, A.C. & Goodfellow, M. 2004. Phylogeny and
functionality: Taxonomy as a roadmap to genes. In Microbial Diversity and Bioprospecting, edited by Bull, A.T.
Washington: ASM Press. pp. 288-313.
Xia, H., Li, X., Li, Z., Zhan, X., Mao, X.
& Li, Y. 2020. The application of regulatory cascades in Streptomyces:
Yield enhancement and metabolite mining. Frontiers in Microbiology 11:
406.
Zin, N.M., Nurul, I.M.S., Norazli, G., Dayang, F.B., Nik,
M.S. & Strobel, G. 2007. Bioactive endophytic streptomyces from the Malay Peninsula. FEMS Microbiology Letters 274(1): 83-88.
*Pengarang untuk surat-menyurat;
email: noraziah.zin@ukm.edu.my
|